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In this talk we will report results with Tom Meyerovitch (2020),
ongoing work with Spencer Unger and some open questions.
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Framework

Let X be a Polish space and consider a Zd action T on X by
homeomorphisms.

By Zd , we will also mean the Cayley graph with standard
generators.

We want to understand the assumptions on the dynamical system
(X , T ) which implies that it is ‘universal’.

By ‘universal’ we mean that ‘any’ free system (Y , S) (with low
enough entropy) can be Borel embedded into (X , T ).
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In this talk we focus on colouring of actions as an example.
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Chromatic number

The chromatic number of a graph is the minimum number of
colours required to properly colour the graph.

The chromatic number of Zd is 2.
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Chromatic number of an action

If Zd acts on a Polish space X in a free manner then this induces
a natural Borel graph structure on it.

What is the chromatic number of this action?

In other words in what is the minimum k such that we can
partition X := tki=1Xi into Borel sets such that if x ∈ Xj then the
neighbours of x are in ∪i 6=jXi .
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The chromatic number is ‘usually’ not 2

Let (X , T ) be a Zd action by homeomorphisms.

Suppose X := X1 tX2 such that if x ∈ X1 then T~e(x) ∈ X2 for all
unit vectors ~e.

This would mean that if µ is an invariant measure for the action
then µ(X1) = µ(X2) = 1/2 and both X1 and X2 are invariant
under T 2. Hence T 2 is not ergodic.
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Gao and Jackson asked what is the chromatic number of a free
Polish action of Zd?

Kechris, Solecki and Todorcevic (1999) had showed that the
chromatic number is it is between 2 and 2d + 1.

Gao and Jackson (2015) showed that it is between 2 and 4.
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Theorem (Chandgotia & Unger, and by Gao, Jackson, Krohne & Seward)

The chromatic number of a free Zd action on a Polish space is
either 2 or 3.

We will now see a sketch of the proof.
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We start with a theorem by Rokhlin.

Theorem (Rokhlin 1948 for d = 1 / Katznelson & Weiss 1972 for d > 1)

Let (X , T ) be a free Zd action and ε > 0 and n ∈N. Then there
exists A ⊂ X such that

T~eA;~e ∈ [1, n]d are disjoint and

µ(t~e∈[1,n]d T~e(A)) > 1− ε

for all invariant measures µ.

How can we properly colour the space using this?
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Şahin-Robinson’s colouring

Given a Zd action (X , T ), a set is called a full set if µ(X ′) = 1 for
invariant probability measures µ.

Theorem (Şahin-Robinson, 2004)

Let (X , T ) be a free Zd action. There exists a proper 3-colouring
of a full set X ′ ⊂ X .

Strictly speaking, the map was defined for every ergodic probability
measure on a set of measure one but this extension is not difficult.

Here they raised a very important question. If (X , T ) has low
enough entropy then can we recover the action (X,T) from its
colouring? In other words, can the colouring be made into an
embedding.

The answer is yes.
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Theorem (Şahin-Robinson, 2004)

Let (X , T ) be a free Zd action. There exists a proper 3-colouring
of a full set X ′ ⊂ X .

Strictly speaking, the map was defined for every ergodic probability
measure on a set of measure one but this extension is not difficult.

Here they raised a very important question. If (X , T ) has low
enough entropy then can we recover the action (X,T) from its
colouring? In other words, can the colouring be made into an
embedding.

The answer is yes.

31 / 88
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Given a Zd action (X , T ), by its entropy, we mean the Gurevic
entropy, that is, the supermum of the measure theoretic entropy on
the space.

You can assume that it is some measure of size / complexity of the
action (X , T ).
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Theorem (Chandgotia, Meyerovitch 2021)

Let (X , T ) be a free Zd action of entropy less than the space of
3-colourings. There exists a full set X ′ ⊂ X which can be
embedded into the space of proper 3-colourings in an equivariant
manner.

In other words the space of proper 3-colourings is ‘almost’
universal. Almost - because we could not do it for the entire space
but had to leave out a null set. Indeed µ(X \ X ′) = 0 for all
invariant probability measures µ.

Question

Prove that the space of proper 3-colourings is universal, that is,
there is no need to get rid of null set to obtain an embedding.
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Theorem (Chandgotia, Meyerovitch 2021)

Let (X , T ) be a free Zd action of entropy less than the space of
3-colourings. There exists a full set X ′ ⊂ X which can be embedded be
embedded into the space of proper 3-colourings in an equivariant manner.

Our techniques are fairly general and apply to a large class of
examples:

1 Space of homomorphisms from Zd to a non-bipartite graph.

2 The space of domino tilings.

3 The space of tilings by rectangular tiles (there is an h <
entropy of the tilings such that we can embed (X , T ) whose
entropy is smaller than h).

4 Space with non-uniform specification.
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(strengthening the result for Krieger-1972).
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Our techniques are fairly general and apply to a large class of
examples:

1 Space of homomorphisms from Zd to a non-bipartite graph.

2 The space of domino tilings.

3 The space of tilings by rectangular tiles (there is an h <
entropy of the tilings such that we can embed (X , T ) whose
entropy is smaller than h).

4 Space with non-uniform specification.

Şahin and Robinson (2002) proved universality for certain systems
assuming certain mixing conditions (which is not satisfied by the
systems given above).
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Our techniques are fairly general and apply to a large class of
examples:

1 Space of homomorphisms from Zd to a non-bipartite graph.

2 The space of domino tilings.

3 The space of tilings by rectangular tiles (there is an h <
entropy of the tilings such that we can embed (X , T ) whose
entropy is smaller than h).

4 Space with non-uniform specification.

For the space of domino tilings we needed an estimate which was
known in d = 2 due to Kastelyn (1968) and was recently proved
by me for d > 2.
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What combinatorial estimate do we need?- A major open
question

Consider a set of rectangles T1, T2, . . . , Tp such that

gcd(dimension of Ti in the kth direction; 1 ≤ i ≤ p) = 1 for all k.

Let N be the product of the side lengths. We need to compare perfect
tilings of a Nk-box and tilings without any boundary restriction.

Question

Prove that

lim
k→∞

log #(perfect tilings of a [1, Nk ]d )

log #( tilings of a [1, Nk ]d )
= 1.
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Our techniques are fairly general and apply to a large class of
examples:

1 Space of homomorphisms from Zd to a non-bipartite graph.

2 The space of domino tilings.

3 The space of tilings by rectangular tiles (there is an h <
entropy of the tilings such that we can embed (X , T ) whose
entropy is smaller than h).

4 (X , T ) is space with non-uniform specification.

With the last item we were answering a question by Quas and Soo
(2012) who proved this with some additional hypothesis.
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A nice corollary of our work is the following:

Theorem (Chandgotia, Meyerovitch 2021)

A generic homeomorphism (with respect to the sup-metric) of any
manifold of dimension > 1 is almost universal.

We believe that adjective almost is unnecessary.
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What problems are encountered getting rid of the ‘almost’?
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We needed that all most every point of the space X belongs to at
most finitely many boundaries of Rokhlin towers.

This no longer holds in the Polish setting.

52 / 88



Why can’t we use Rokhlin towers directly?

Theorem (Gao, Jackson and Krohne, 2015)

Let d ≥ 2 and (X , T ) be a Zd minimal dynamical system such
that the subsystem with respect to Z× {0}d−1 is also minimal.

Given a sequence of Borel sets Bn ⊂ X with the following
properties:

1 Bn is a complete section.

2 The connected components of Bn are finite rectangles growing
in size.

Then the set

{x ∈ X : x ∈ ∂Bn for infinitely many n}

is comeager.
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Gao, Jackson and Seward also suggested a workaround. A proof of
this can be found in a paper by Marks and Unger.
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Gao, Jackson and Seward’s walkaround
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While this suggests a walk around, it can be very complicated to
use this path even in the simplest cases.

It seems almost
impossible to use this to prove embedding results.

Nevertheless we are able to use this to prove the correct bound for
the chromatic number.

Theorem (Chandgotia & Unger, and by Gao, Jackson, Krohne & Seward)

The chromatic number of a free Zd action on a Polish space is
either 2 or 3.
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Theorem (Chandgotia & Unger, and by Gao, Jackson, Krohne & Seward)

The chromatic number of a free Zd action on a Polish space is
either 2 or 3.

Again our methods are general enough to show that we can find a
factor from any free Polish Zd action (X , T ) to:

1 The space of tilings by rectangles (under some natural
necessary conditions).

2 The space of directed bi-infinite Hamiltonian paths.

The first result extends results of Gao and Jackson who need
additional assumptions on the rectangles. It answers question
raised by Gao, Jackson and Seward.
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Theorem (Chandgotia & Unger, and by Gao, Jackson, Krohne & Seward)

The chromatic number of a free Zd action on a Polish space is
either 2 or 3.

Again our methods are general enough to show that we can find a
factor from any free Polish Zd action (X , T ) to:

1 The space of tilings by rectangles (under some natural
necessary conditions).

2 The space of directed bi-infinite Hamiltonian paths.

The second result recovers a result announced by Gao, Jackson,
Krohne & Seward. Under presence of an ergodic measure this
result was announced by Downarowicz, Oprocha & Zhang.
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What is a bi-infinite Hamiltonian path?

A directed Hamiltonian path on a graph is a walk on a graph such
that every vertex is visited exactly once

This shows that any Zd action on a Polish space (X , T ) is orbit
equivalent to a Z action (X , S) such that if S(x) = T~e(x) for
some unit vector ~e (depends on x).
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But can we get no embedding results?

Since we already know how to deal with spaces with invariant
probability measures, we need to deal with actions with no
invariant probability measures.

There are two breakthrough’s which indicate that we might be able
to make our way through eventually.

Theorem (Tserunyan 2015)

Let (X , T ) be the action of a countable group with no invariant
probability measures then it can be embedded in the full shift over
32 symbols.

Theorem (Hochman 2019)

Let (X , T ) be the action of Z with no invariant probability
measures then it can be embedded in any shift of finite type.
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We could in the mean time obtain some intermediate results.

Theorem (Chandgotia & Unger)

Let (X , T ) be a Zd shift space whose entropy is smaller than that
of the space of 3-colourings. Then the free part of X can be Borel
embedded in the space of 3-colourings.

Again this can be generalised to tilings, the space of bi-infinite
Hamiltonian paths.

Our methods are completely different from the previous proofs of
such results but restricted to symbolic spaces.
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In this category, it can be asked whether these embeddings can be
made continuous.

Theorem (Gao & Jackson 2015)

A continuous 3-colouring of the free part of the 2-full shift does
not exist (but a 4-colouring does).

Theorem (Salo, 2021)

There is no continuous embedding of the space of proper 3
colourings into the 2 full shift.
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Open questions

1 Prove that there exists universal subshifts whose entropies form a
dense set in R.

2 Let (X , T ) and (Y , S) be dynamical systems. Suppose there is a
bijection φ from the space of invariant ergodic probability measures
on (X , T ) to those on (Y , S) such that (X , µ, T ) is isomorphic to
(Y , φ(µ), S). Is (X , T ) isomorphic to (Y , S) (up to universally null
sets)?

3 Let T be a set of coprime boxes. Let N be the product of length of
the sides of T. Prove that

lim
n→∞

1

Ndnd
log(the number of tilings of [1,Nn]d by elements of T) = topological entropy of all the tilings of T.

4 Rd actions?

5 Continuous category
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